SCOPE: Use this plan ONLY for utility-interactive central/string inverter systems not exceeding a system AC inverter output rating of 10kW on the roof of a one- or two-family dwelling or accessory structure. The photovoltaic system must interconnect to the load side of a single-phase AC service panel of nominal 120/240Vac with a bus bar rating of 225A or less. This plan is not intended for bipolar systems, hybrid systems or systems that utilize storage batteries, charge controllers, trackers, more than two inverters or more than one DC combiner (noninverter-integrated) per inverter. Systems must be in compliance with current California Building Standards Codes and local amendments of the authority having jurisdiction (AHJ). Other Articles of the California Electrical Code (CEC) shall apply as specified in 690.3.

MANUFACTURER’S SPECIFICATION SHEETS MUST BE PROVIDED for proposed inverter, modules, combiner/junction boxes and racking systems. Installation instructions for bonding and grounding equipment shall be provided, and local AHJs may require additional details. Listed and labeled equipment shall be installed and used in accordance with any instructions included in the listing or labeling (CEC 110.3). Equipment intended for use with PV system shall be identified and listed for the application (CEC 690.4[D]).

Job Address: __________________________ Permit #: ______________________

Contractor/Engineer Name: __________________________ License # and Class: ______________________

Signature: __________________________ **Date:** __________ Phone Number: ______________________

Total # of Inverters installed: ________ (If more than one inverter, complete and attach the “Supplemental Calculation Sheets” and the “Load Center Calculations” if a new load center is to be used.)

- Inverter 1 AC Output Power Rating: ____________ Watts
- Inverter 2 AC Output Power Rating (if applicable): ____________ Watts
- Combined Inverter Output Power Rating: ____________ ≤ 10,000 Watts

Location Ambient Temperatures (Check box next to which lowest expected temperature is used):

1) ☐ Lowest expected ambient temperature for the location \(T_a = \text{Between -1 to -5 °C} \)
 ☐ Lowest expected ambient temperature for the location \(T_a = \text{Between -6 to -10 °C} \)

 Average ambient high temperature \(T_{hi} = 47 °C \)

 Note: For a lower \(T_a \) or a higher \(T_{hi} \), use the Comprehensive Standard Plan

DC Information:

<table>
<thead>
<tr>
<th>Module Manufacturer: __________________________</th>
<th>Model: __________________________</th>
</tr>
</thead>
</table>

2) Module \(V_{oc} \) (from module nameplate): ________ Volts
3) Module \(I_{sc} \) (from module nameplate): ________ Amps

4) Module DC output power under standard test conditions (STC) = ________ Watts (STC)
5) DC Module Layout

Identify each source circuit (string) for inverter 1 shown on the roof plan with a Tag (e.g. A,B,C,...)	Number of modules per source circuit for inverter 1	Identify, by tag, which source circuits on the roof are to be paralleled (if none, put N/A)

Combiner 1:

Combiner 2:

Total number of source circuits for inverter 1:

6) Are DC/DC Converters used? ☐ Yes ☐ No

If No, skip to Step 7. If Yes enter info below.

DC/DC Converter Model #:
Max DC Output Current: Amps
Max # of DC/DC Converters in an Input Circuit:

DC/DC Converter Max DC Input Voltage: Volts
Max DC Output Current: Volts
DC/DC Converter Max DC Input Power: Watts

7) Maximum System DC Voltage — Use A1 or A2 for systems without DC/DC converters, and B1 or B2 with DC/DC Converters.

☐ A1. Module V_{oc} (STEP 2) = ________ x # in series (STEP 5) ________ x 1.12 (if -1 ≤ T_s ≤ -5°C, STEP 1) = ________ V
☐ A2. Module V_{oc} (STEP 2) = ________ x # in series (STEP 5) ________ x 1.14 (if -6 ≤ T_s ≤ -10°C, STEP 1) = ________ V

<table>
<thead>
<tr>
<th>Table 1. Maximum Number of PV Modules in Series Based on Module Rated V_{oc} for 600 Vdc Rated Equipment (CEC 690.7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Rated Module V_{oc} (*1.12) (Volts)</td>
</tr>
<tr>
<td>Max. Rated Module V_{oc} (*1.14) (Volts)</td>
</tr>
<tr>
<td>Max # of Modules for 600 Vdc</td>
</tr>
</tbody>
</table>

Use for DC/DC converters. The value calculated below must be less than DC/DC converter max DC input voltage (STEP 6).

☐ B1. Module V_{oc} (STEP 2) = ________ x # of modules per converter (STEP 6) ________ x 1.12 (if -1 ≤ T_s ≤ -5°C, STEP 1) = ________ V
☐ B2. Module V_{oc} (STEP 2) = ________ x # of modules per converter (STEP 6) ________ x 1.14 (if -6 ≤ T_s ≤ -10°C, STEP 1) = ________ V

<table>
<thead>
<tr>
<th>Table 2. Largest Module V_{oc} for Single-Module DC/DC Converter Configurations (with 80 V AFCI Cap) (CEC 690.7 and 690.11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Rated Module V_{oc} (*1.12) (Volts)</td>
</tr>
<tr>
<td>Max. Rated Module V_{oc} (*1.14) (Volts)</td>
</tr>
<tr>
<td>DC/DC Converter Max DC Input (Step #6) (Volts)</td>
</tr>
</tbody>
</table>

8) Maximum System DC Voltage from DC/DC Converters to Inverter — Only required if Yes in Step 6

Maximum System DC Voltage = ________ Volts

9) Maximum Source Circuit Current

Is Module I_{sc} below 9.6 Amps (Step 3)? ☐ Yes ☐ No (If No, use Comprehensive Standard Plan)
10) Sizing Source Circuit Conductors
Source Circuit Conductor Size = Min. #10 AWG copper conductor, 90°C wet (USE-2, PV Wire, XHHW-2, THWN-2, RHW-2)
For up to 8 conductors in roof-mounted conduit exposed to sunlight at least ½” from the roof covering (CEC 310)
Note: For over 8 conductors in the conduit or mounting height of lower than ½” from the roof, use Comprehensive Plan.

11) Are PV source circuits combined prior to the inverter? □ Yes □ No
If No, use Single Line Diagram 1 and proceed to Step 13.
If Yes, use Single Line Diagram 2 with Single Line Diagram 4 and proceed to Step 12.
Is source circuit OCPD required? □ Yes □ No
Source circuit OCPD size (if needed): 15 Amps

12) Sizing PV Output Circuit Conductors — If a combiner box will NOT be used (Step 11),
Output Circuit Conductor Size = Min. #6 AWG copper conductor

13) Inverter DC Disconnect
Does the inverter have an integrated DC disconnect? □ Yes □ No If Yes, proceed to step 14.
If No, the external DC disconnect to be installed is rated for _______ Amps (DC) and _______ Volts (DC)

14) Inverter Information
Manufacturer: ____________________________ Model: ____________________________
Max. Continuous AC Output Current Rating: _______ Amps
Integrated DC Arc-Fault Circuit Protection? □ Yes □ No (If No is selected, Comprehensive Standard Plan)
Grounded or Ungrounded System? □ Grounded □ Ungrounded

AC Information:

15) Sizing Inverter Output Circuit Conductors and OCPD
Inverter Output OCPD rating = _______ Amps (Table 3)
Inverter Output Circuit Conductor Size = _______ AWG (Table 3)

<table>
<thead>
<tr>
<th>Table 3. Minimum Inverter Output OCPD and Circuit Conductor Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter Continuous Output Current Rating (Amps) (Step 14)</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>Minimum OCPD Size (Amps)</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>Minimum Conductor Size (AWG, 75°C, Copper)</td>
</tr>
<tr>
<td>14</td>
</tr>
</tbody>
</table>

Integrated DC Arc-Fault Circuit Protection? □ Yes □ No (If No is selected, Comprehensive Standard Plan)
Grounded or Ungrounded System? □ Grounded □ Ungrounded
16) Point of Connection to Utility

Only load side connections are permitted with this plan. Otherwise, use Comprehensive Standard Plan.

Is the PV OCPD positioned at the opposite end from input feeder location or main OCPD location? □ Yes □ No
If Yes, circle the Max Combined PV System OCPD(s) at 120% value as determined from Step 15 (or Step S20), bus bar Rating, and Main OCPD as shown in Table 4.
If No, circle the Max Combined PV System OCPD(s) at 100% value as determined from Step 15 (or Step S20), bus bar Rating, and Main OCPD as shown in Table 4.
Per 705.12(D)(2): [Inverter output OCPD size [Step #15 or S20] + Main OCPD Size] ≤ [bus size x (100% or 120%)]

<table>
<thead>
<tr>
<th>Table 4. Maximum Combined Supply OCPDs Based on Bus Bar Rating (Amps) per CEC 705.12(D)(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus Bar Rating</td>
</tr>
<tr>
<td>Main OCPD</td>
</tr>
<tr>
<td>Max Combined PV System OCPD(s) at 120% of Bus Bar Rating</td>
</tr>
<tr>
<td>Max Combined PV System OCPD(s) at 100% Bus Bar Rating</td>
</tr>
</tbody>
</table>

*This value has been lowered to 60 A from the calculated value to reflect 10 kW AC size maximum.

Reduction of the main breaker is not permitted with this plan. Otherwise, use Comprehensive Standard Plan.

17 & 18 & 19) Labels and Grounding and Bonding

This content is covered by the labels on the next page and the Single Line Diagram(s). For background information, refer to the Comprehensive Standard Plan.
Solar PV Standard Plan — Simplified
Central/String Inverter Systems for One- and Two-Family Dwellings

Markings

CEC Articles 690 and 705 and CRC Section R331 require the following labels or markings be installed at these components of the photovoltaic system:

- **WARNING INVERTER OUTPUT CONNECTION; DO NOT RELOCATE THIS OVERCURRENT DEVICE**
 - CEC 705.12(D)(7) [Not required if panelboard is rated not less than sum of ampere ratings of all overcurrent devices supplying it]

- **WARNING ELECTRIC SHOCK HAZARD. THE DC CONDUCTORS OF THIS PHOTOVOLTAIC SYSTEM ARE UNGROUNDED AND MAY BE ENERGIZED**
 - CEC 690.56(F) [Only required for ungrounded systems]

- **WARNING PHOTOVOLTAIC POWER SOURCE**
 - CRC R331.2 and CFC 605.11.1 [Marked on junction/combiner boxes and conduit every 10']

- **WARNING: DUAL POWER SOURCES**
 - SECOND SOURCE IS PHOTOVOLTAIC SYSTEM
 - RATED AC OUTPUT CURRENT - ____ AMPS AC
 - NORMAL OPERATING VOLTAGE ____ VOLTS
 - CEC 690.54 & CEC 705.12(D)(4)

- **PV SYSTEM AC DISCONNECT**
 - RATED AC OUTPUT CURRENT - ____ AMPS AC
 - NORMAL VOLTAGE ____ VOLTS
 - CEC 690.54

- **WARNING ELECTRIC SHOCK HAZARD**
 - IF A GROUND FAULT IS INDICATED, NORMALLY GROUNDED CONDUCTORS MAY BE UNGROUNDED AND ENERGIZED
 - CEC 690.5(C) [Normally already present on listed inverters]

- **WARNING PHOTOVOLTAIC POWER SOURCE**
 - PV SYSTEM DC DISCONNECT
 - RATED MAX POWER-POINT CURRENT - ____ ADC
 - RATED MAX POWER-POINT VOLTAGE - ____ VDC
 - SHORT CIRCUIT CURRENT - ____ ADC
 - MAXIMUM SYSTEM VOLTAGE - ____ VDC
 - CEC 690.53

Code Abbreviations:
California Electrical Code (CEC)
California Residential Code (CRC)
California Fire Code (CFC)

Informational note: ANSI Z535.4 provides guidelines for the design of safety signs and labels for application to products. A phenolic plaque with contrasting colors between the text and background would meet the intent of the code for permanency. No type size is specified, but 20 point (3/8") should be considered the minimum.

CEC 705.12 requires a permanent plaque or directory denoting all electric power sources on or in the premises.
Solar PV Standard Plan — Simplified
Central/String Inverter Systems for One- and Two-Family Dwellings

<table>
<thead>
<tr>
<th>TAG</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SOLAR PV MODULE / STRING</td>
</tr>
<tr>
<td>2</td>
<td>2 DC SOLAR CONVERTER INSTALLED? YES / NO (If YES, STEPS 6 & 8 REQUIRED)</td>
</tr>
<tr>
<td>3</td>
<td>SOURCE CIRCUIT JUNCTION BOX INSTALLED? YES / NO</td>
</tr>
<tr>
<td>4</td>
<td>SEPARATE DC DISCONNECT INSTALLED? YES / NO</td>
</tr>
<tr>
<td>5</td>
<td>INTERNAL INVERTER DC DISCONNECT? YES / NO</td>
</tr>
<tr>
<td>6</td>
<td>CENTRAL INVERTER</td>
</tr>
<tr>
<td>7</td>
<td>LOAD CENTER INSTALLED? YES / NO</td>
</tr>
<tr>
<td>8</td>
<td>PV PRODUCTION METER INSTALLED? YES / NO</td>
</tr>
<tr>
<td>9</td>
<td>SEPARATE AC DISCONNECT INSTALLED? YES / NO</td>
</tr>
<tr>
<td>10</td>
<td>CONNECT TO INVERTER #2 (USE LINE DIAGRAM 2)</td>
</tr>
</tbody>
</table>

* Consult with your local AHJ and/or Utility

SINGLE-LINE DIAGRAM #1 – NO STRINGS COMBINED PRIOR TO INVERTER

CHECK A BOX FOR WHETHER SYSTEM IS GROUNDED OR UNGROUNDED:
- GROUNDED (INCLUDE GEC)
- UNGROUNDED

FOR UNGROUNDED SYSTEMS:
- DC OCPD MUST DISCONNECT BOTH CONDUCTORS OF EACH SOURCE CIRCUIT
- UNGROUNDED CONDUCTORS MUST BE IDENTIFIED PER 210.5(C). WHITE-FINISHED CONDUCTORS ARE NOT PERMITTED.

CONDUCTORS/RIGID SCH 80

<table>
<thead>
<tr>
<th>CONDUCTOR</th>
<th>CONDUCTOR</th>
<th>CONDUCTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTRY IN</td>
<td>12-2</td>
<td>12-3</td>
</tr>
<tr>
<td>DEVICES</td>
<td>DCDC CONVERTER</td>
<td>INVERTER</td>
</tr>
<tr>
<td>CABLES</td>
<td>DCDC CONVERTER</td>
<td>INVERTER</td>
</tr>
</tbody>
</table>

IF DC/DC CONVERTERS ARE USED, CHECK THE BOX BELOW THE CORRESPONDING CONFIGURATION

ENTER “N/A” WHERE SUITABLE FOR WHEN NOT USING CONDUIT OR CABLE AS PERMITTED BY CODE

PARALLEL DC/DC CONVERTERS ON ONE SOURCE CIRCUIT (FIXED UNIT VOLTAGE DC/DC CONVERTERS)

DC/DC CONVERTERS ARE ALL RUN IN SERIES (FIXED SOURCE CIRCUIT VOLTAGE DC/DC CONVERTERS)

Part 3: PV Toolkit for Local Governments
Solar PV Standard Plan — Simplified
Central/String Inverter Systems for One- and Two-Family Dwellings

SINGLE-LINE DIAGRAM #2 – COMBINING STRINGS PRIOR TO INVERTER

CHECK A BOX FOR WHETHER SYSTEM IS GROUNDED OR UNGROUNDED:

- GROUNDED (INCLUDE GEC)
- UNGROUNDED

FOR UNGROUNDED SYSTEMS:
- DC OCPD MUST DISCONNECT BOTH CONDUCTORS OF EACH SOURCE CIRCUIT
- UNGROUNDED CONDUCTORS MUST BE IDENTIFIED PER 210.5(C). WHITE-FINISHED CONDUCTORS ARE NOT PERMITTED.

* Consult with your local AHJ and/or Utility

NON-COMBINED STRINGS CONDUCTOR/CONDUIT SCHEDULE (IF APPLICABLE)

<table>
<thead>
<tr>
<th>Tag</th>
<th>Description and Conductor Type</th>
<th>Conductor Size</th>
<th>Number of Conductors</th>
<th>Conduit/Cable Type</th>
<th>Conduit Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>USE-2 OR PV-WIRING</td>
<td></td>
<td></td>
<td>GEC/GEC</td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td></td>
<td></td>
<td></td>
<td>GEC/GEC</td>
<td></td>
</tr>
</tbody>
</table>

ENTER "N/A" WHERE SUITABLE FOR WHEN NOT USING CONDUIT OR CABLE AS PERMITTED BY CODE
Solar PV Standard Plan — Simplified
Central/String Inverter Systems for One- and Two-Family Dwellings
Supplemental Calculation Sheets for Inverter #2
(Only include if second inverter is used)

DC Information:

<table>
<thead>
<tr>
<th>Module Manufacturer: __________________________</th>
<th>Model: __________________________</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2) Module V_{oc} (from module nameplate): ______ Volts</td>
<td>S3) Module I_{sc} (from module nameplate): ______ Amps</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>S4) Module DC output power under standard test conditions (STC) = ______ Watts (STC)</td>
<td></td>
</tr>
</tbody>
</table>

S5) DC Module Layout

<table>
<thead>
<tr>
<th>Identify each source circuit (string) for inverter 1 shown on the roof plan with a Tag (e.g. A,B,C,...)</th>
<th>Number of modules per source circuit for inverter 1</th>
<th>Identify, by tag, which source circuits on the roof are to be paralleled (if none, put N/A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Combiner 1:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Combiner 2:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total number of source circuits for inverter 1:</td>
<td></td>
</tr>
</tbody>
</table>

S6) Are DC/DC Converters used? ☐ Yes ☐ No
If No, skip to Step S7. If Yes, enter info below.

<table>
<thead>
<tr>
<th>DC/DC Converter Model #: __________________________</th>
<th>DC/DC Converter Max DC Input Voltage: ______ Volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max DC Output Current: __________________________ Amps</td>
<td>Max DC Output Current: __________________________ Volts</td>
</tr>
<tr>
<td>Max # of DC/DC Converters in an Input Circuit: __________</td>
<td>DC/DC Converter Max DC Input Power: ______ Watts</td>
</tr>
</tbody>
</table>

Part 3: PV Toolkit for Local Governments 33
S7) Maximum System DC Voltage — Use A1 or A2 for systems without DC/DC converters, and B1 or B2 with DC/DC Converters.

- **A1.** Module V_{dc} (STEP S2) = $\frac{x}{\text{# in series (STEP SS)}} \times 1.12$ (if $-1 \leq T_i \leq -5^\circ C$, STEP S1) = ________ Volts
- **A2.** Module V_{dc} (STEP S2) = $\frac{x}{\text{# in series (STEP SS)}} \times 1.14$ (if $-6 \leq T_i \leq -10^\circ C$, STEP S1) = ________ Volts

<table>
<thead>
<tr>
<th>Table 1. Maximum Number of PV Modules in Series Based on Module Rated V_{dc} for 600 Vdc Rated Equipment (CEC 690.7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Rated Module V_{dc} (STEP S1) (Volts)</td>
</tr>
<tr>
<td>Max. Rated Module V_{dc} (STEP S2) (Volts)</td>
</tr>
<tr>
<td>Max # of Modules for 600 Vdc</td>
</tr>
</tbody>
</table>

Use for DC/DC converters. The value calculated below must be less than DC/DC converter max DC input voltage (STEP S6).

- **B1.** Module V_{dc} (STEP S2) = $\frac{x}{\text{# of modules per converter (STEP S6)}} \times 1.12$ (if $-1 \leq T_i \leq -5^\circ C$, STEP S1) = ________ Volts
- **B2.** Module V_{dc} (STEP S2) = $\frac{x}{\text{# of modules per converter (STEP S6)}} \times 1.14$ (if $-6 \leq T_i \leq -10^\circ C$, STEP S1) = ________ Volts

<table>
<thead>
<tr>
<th>Table 2. Largest Module V_{dc} for Single-Module DC/DC Converter Configurations (with 80 V AFCI Cap) (CEC 690.7 and 690.11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Rated Module V_{dc} (STEP S1) (Volts)</td>
</tr>
<tr>
<td>Max. Rated Module V_{dc} (STEP S2) (Volts)</td>
</tr>
<tr>
<td>DC/DC Converter Max DC Input (Step S6) (Volts)</td>
</tr>
</tbody>
</table>

S8) Maximum System DC Voltage from DC/DC Converters to Inverter — Only required if Yes in Step S6

Maximum System DC Voltage = ________ Volts

S9) Maximum Source Circuit Current

Is Module ISC below 9.6 Amps (Step S3)? □ Yes □ No (If No, use Comprehensive Standard Plan)

S10) Sizing Source Circuit Conductors

- Source Circuit Conductor Size = Min. #10 AWG copper conductor, 90°C wet (USE-2, PV Wire, XHHW-2, THHN-2, RHW-2)
- For up to 8 conductors in roof-mounted conduit exposed to sunlight at least ¾” from the roof covering (CEC 310)
- Note: For over 8 conductors in the conduit or mounting height of lower than ¾” from the roof, use Comprehensive Plan.

S11) Are PV source circuits combined prior to the inverter? □ Yes □ No

If No, use Single Line Diagram 1 and proceed to Step S13.
If Yes, use Single Line Diagram 2 with Single Line Diagram 4 and proceed to Step S12.

Is source circuit OCPD required? □ Yes □ No

Source circuit OCPD size (if needed): 15 Amps

S12) Sizing PV Output Circuit Conductors — If a combiner box will NOT be used (Step S11),

Output Circuit Conductor Size = Min. #6 AWG copper conductor

S13) Inverter DC Disconnect

Does the inverter have an integrated DC disconnect? □ Yes □ No

If Yes, proceed to Step S14.
If No, the external DC disconnect to be installed is rated for ________ Amps (DC) and ________ Volts (DC)
S14) Inverter Information

Manufacturer: ____________________________ Model: ____________________________

Max. Continuous AC Output Current Rating: _______ Amps

Integrated DC Arc-Fault Circuit Protection? □ Yes □ No (If No is selected, Comprehensive Standard Plan)

Grounded or Ungrounded System? □ Grounded □ Ungrounded

AC Information:

S15) Sizing Inverter Output Circuit Conductors and OCPD

Inverter Output OCPD rating = _______ Amps (Table 3)

Inverter Output Circuit Conductor Size = _______ AWG (Table 3)

<table>
<thead>
<tr>
<th>Table 3. Minimum Inverter Output OCPD and Circuit Conductor Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter Continuous Output Current Rating (Amps) (Step 14)</td>
</tr>
<tr>
<td>Minimum OCPD Size (Amps)</td>
</tr>
<tr>
<td>Minimum Conductor Size (AWG, 75°C, Copper)</td>
</tr>
</tbody>
</table>

Load Center Calculations

(Omit if a load center will not be installed for PV OCPDs)

S20) Load Center Output:

Calculate the sum of the maximum AC outputs from each inverter.

Inverter #1 Max Continuous AC Output Current Rating [STEP S14] _______ x 1.25 = _______ Amps

Inverter #2 Max Continuous AC Output Current Rating [STEP S14] _______ x 1.25 = _______ Amps

Total inverter currents connected to load center (sum of above) = _______ Amps

Conductor Size: _______ AWG

Overcurrent Protection Device: _______ Amps

Load center bus bar rating: _______ Amps

The sum of the ampere ratings of overcurrent devices in circuits supplying power to a bus bar or conductor shall not exceed 120 percent of the rating of the bus bar or conductor.
Solar PV Standard Plan — Simplified
Central/String Inverter Systems for One- and Two-Family Dwellings

SINGLE-LINE DIAGRAM #3 – ADDITIONAL INVERTER FOR DIAGRAM #1

INVERTER # 2

CHECK A BOX FOR WHETHER SYSTEM IS GROUNDED OR UNGROUNDED:

- GROUNDED (INCLUDE GEC)
- UNGROUNDED

FOR UNGROUNDED SYSTEMS:
- DC OCPD MUST DISCONNECT BOTH CONDUCTORS OF EACH SOURCE CIRCUIT
- UNGROUNDED CONDUCTORS MUST BE IDENTIFIED PER 210.5(C). WHITE-FINISHED CONDUCTORS ARE NOT PERMITTED.

CONDITION/CONDOR SCHEDULE

V: DESCRIPTION AND CONDITION LINE CONDITION NUMBER OF CONDUCTORS USED CONDITION USE
 1: DC/DC: CONDUCTORS USED CONDITION NUMBER OF CONDUCTORS USED CONDITION USE

ENTER "N/A" WHERE SUITABLE FOR WHEN NOT USING CONDUIT OR CABLE AS PERMITTED BY CODE.

PARALLEL DC/DC CONVERTERS ON ONE SOURCE CIRCUIT (FIXED UNIT VOLTAGE DC/DC CONVERTERS)

DC/DC CONVERTERS ARE ALL RUN IN SERIES (FIXED SOURCE CIRCUIT VOLTAGE DC/DC CONVERTERS)
SOLAR PV STANDARD PLAN

Roof Layout Diagram for One- and Two-Family Dwellings

Items required: roof layout of all panels, modules, clear access pathways and approximate locations of electrical disconnecting means and roof access points.