East San Pedro Bay
Ecosystem Restoration Feasibility Study
Long Beach, CA

Community Update

27 November 2017
I. Background - Study Overview & Formulation
 ❖ Study Area, Goal & Objective
 ❖ Constraints, Opportunity Zones, & Measures

II. Progress Over the Last Year
 ❖ HEM Workshop, Preliminary Alternatives, Wave Modeling, Hydrodynamic Modeling, Conceptual Cost Estimates, Schedule Assessment, Funding

III. Next Steps
 ❖ HEM, CEICA, Final Array, IFR, Public Outreach, Funding
Study Area

Southern California Bight, Santa Barbara to Mexico Border
Existing Conditions
Habitat Types

Rocky Reef

Tidal Marsh Estuary

Kelp Forest

Sandy Bottom

Eelgrass
Goal
Restore and improve aquatic ecosystem structure and function for increased habitat biodiversity and ecosystem value of the southern California bight within the proposed project area of East San Pedro Bay (ESPB).

Objective
Restore aquatic habitat such as kelp, rocky reef, coastal wetlands and other types historically present in San Pedro Bay of sufficient quality and quantity to support diverse resident and migratory species within ESPB during the period of analysis.
Coastal Wetland Loss

1850 (approx.)

Historic and Current Estuarine Habitat (Source: Wetlands of the Southern California Coast, Southern California Coastal Water Research Project)
- Degradation of rare marine habitats
- Continued decline in marine biodiversity and populations
- Impairment of water circulation and wave induced mixing will continue to concentrate pollutants and reduce water clarity within the bay, resulting in deleterious effects on sensitive ecosystem functions.
- Reduced wave energy will continue to limit certain recreational activities along the beach shoreline including surfing and swimming.
Constraints and Considerations

► Do not reduce maritime operational capacity for the port, the U.S. Navy, THUMS energy islands.

► Minimize impacts to known major utilities or navigation channels and anchorages.

► Avoid increases in shoreline erosion, wave related damages, and coastal flooding to existing residences, public infrastructure, marinas, existing jetties, other structures, and recreational beaches.

► Minimize impact to flood risk management operations on LA River.

► Minimize vulnerability of coastal areas to accelerating sea level rise.
Progress to date

► Habitat Evaluation Model Workshop

- 2 day workshop – November 2016
- Develop foundation for HEM
- Comprised of subject matter experts
- HEM is the tool that determines benefits of measures
- Outputs from model represented as habitat unit and used in the CE/ICA model
Progress to date

Preliminary Working Alternatives

- Baseline scenarios developed for use in coastal and hydrodynamic modeling

1. Nearshore
2. Open Water
3. LA River Mouth
4. Port
5. Breakwater
Example Measures by Zone

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Giant Kelp Forest</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Eelgrass Beds</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rocky Reef</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Sandy/Rocky Shoals</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Sandy Island</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oyster Beds</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Sandy Bottom</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coastal Wetlands</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Training Wall</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Breakwater Modifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Underwater Contouring</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Beach sand management</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BENCHMARKS
Progress to date

Wave Modeling

- Determine wave energy, depth, and substrate i.e. parameters for habitat types
- Assess surface wave effects on infrastructure, navigation, recreation, and circulation
- Results were input into the hydrodynamic modeling
Progress to date

Hydrodynamic Modeling

- Numeric tracer tracking study
- 3-D visualization of sediment transport and water quality
- Results were input into the habitat evaluation model

![Figure 4.2 Existing Conditions Velocity Spatial Plots](image)
Conceptual Cost Estimates

- Cost estimate for each measure or individual restoration feature.
- Measures serve as building blocks for each study alternative.
- Results are input into the CE/ICA model
Progress to date

► Schedule Assessment

- Extension of TSP milestone: September 2017 to Summer 2018

► Budget

- $275,000 in federal funding was received for FY17
- $194,000 budgeted for FY18
Next Steps

► Habitat Evaluation Modeling (HEM)
 • Evaluate existing and future capacity of various habitats
 • Results are input into the CE/ICA model

► Cost Effectiveness/ Incremental Cost Analysis (CE/ICA)
 • Balances the results of the cost estimates and HEM for cost effective solutions for habitat restoration

► Final Array of Alternatives
 • Best buy plans from CE/ICA
 • National Ecosystem Restoration Plan (NER)
 • Tentatively Selected Plan (TSP)
 • Locally Preferred Plan (LPP)
Next Steps

► Draft Integrated Feasibility Report (IFR)
 • Includes final array
 • Draft Environmental Impact Statement (EIS)
 • Environmental Impact Report (EIR)
 • Presented for public comment period

► Public Outreach/ Comment
 • Update and overview of CE/ICA process spring of 2018
 • Public meeting to present Draft IFR
 • Public comment period