December 28, 2009
Project No. 107104

City of Long Beach
Department of Parks, Recreation, and Marine
2760 North Studebaker Road
Long Beach, California 90802

Attention: Sandra J. Gonzalez, Manager

Subject: DRAFT
Possible Slope Improvement Options for
Project Cost Estimating
Bluff Park
E. Ocean Blvd. between Loma Ave. and Lindero Ave.
Long Beach, California

Dear Ms. Gonzalez:

This supplemental letter provides information to aid RJM Design Group, Inc. in preparing cost estimates for various options to better control erosion and facilitate irrigation and planting of the Bluff Park slope. As requested by RJM Design Group, Inc., we have roughly identified the extent of our recommended slope modifications on the plans and cross sections from our draft report for the purposes of determining preliminary quantities. This letter and the attached plans and sections include three different levels of options for increasing slope stability and/or reducing slope erosion. The attached cross sections and plans have been prepared for cost estimating purposes only and are not intended for design. Any final quantities should be based on field verifications.
OPTION 1 (Improve Slope Stability)

Option 1 is a relatively extensive fill option that will improve erosion resistance, surficial stability, global stability and will facilitate planting and irrigation. This option was separated as Option 1A, which uses Geogrids in the fill, and Option 1B which has no Geogrids. Both options consist of placing fill against the lower and/or steep portions of the slope to buttress the existing erosion areas, slide debris areas, and gabion walls. Plates 2A through 2E in Attachment 1 show the approximate outline of the proposed fill for Options 1A and 1B.

Option 1A is proposed to reduce the amount of import fill and encroachment on the beach by constructing a portion of the fill at an inclination of 1:5:1 (horizontal:vertical) using Geogrids. Fill buttressing the gabion walls will be at an inclination of 2:1 and will also have Geogrids. Above the proposed terrace drain, the slope can be constructed at an inclination of 2:1 and will not require Geogrids. All fill below the terrace drain should be at least 10 feet wide. With this option, the encroachment on to the beach south of the existing wall at the toe of the slope will be generally between 10 and 15 feet. The stairways and storm drain outlets can remain in place, except for the relocation of the lower three stairway steps at Station 7+60. The Edison vault near Station 8+20 can also remain in place; however, the buried lines along the slope toe wall and power poles further east may require relocation.

Option 1B is similar to Option 1A except that no Geogrids are used within the fill. All fill below the terrace drain and gabion walls will be at an inclination of at least 2½:1 (horizontal:vertical). The fill encroachment on to the beach, south of the slope toe wall will be generally between 15 and 30 feet wide. The anticipated volume of import fill may be 50 to 70 percent greater than for Option 1A. The cross sections in Attachment 1 can be used to calculate rough estimates of anticipated quantities.

Both Options 1A and 1B will still require the use a permanent erosion protection fabric with planting in steep slope segments above the fill. We recommend that an erosion protection fabric be used in areas steeper than 1¼:1. Because of the relatively low height (about 10 feet) of the upper portion of the slope that will remain, the use of curb or railing to anchor the erosion fabric along with deadman anchors and/or posts will not be necessary. For cost estimating purposes, permanent erosion protection fabric should be used above the stabilization fill from Stations 0+00 to 5+10, from 13+90 to 19+50, from 20+40 to 31+00, from 32+00 to 35+50 and from 37+00 to 40+50, as shown on Attachment 1, Options 1A and 1B, Cross Sections and Plates 2A through 2E.

OPTION 2 (Partial Improvements to Stabilize Critical Slope Areas)

Option 2 consists of fill placement only in the areas that contain the most oversteepen slope segments, which would be very difficult to protect with vegetation. Sloughing and sliding will continue to occur between and beyond these stabilized areas. The proposed fill as described in Options 1A and 1B is applicable to the oversteepen slope segments.
These areas are located from Stations 0+00 to 5+10, from 13+90 to 19+50 and from Stations 20+20 to 27+00. This option will not improve the existing low factor of safety for stability of the gabion walls. The portion of the slope above the fill will have an erosion fabric as discussed previously for Option 1 and the remainder of the slope will have an erosion fabric as discussed in Option 3 below.

OPTION 3 (Erosion Protection Only)

Option 3 consists essentially of only improving erosion and beautifying the slope with additional planting. This option will not reduce slumping, landsliding, or stability in any portions of the slope. Erosion protection will likely require periodic maintenance of slumping areas.

In accordance with the referenced draft geotechnical study report, we recommend shrub planting only on portions of the slope that are not steeper than 1½:1 (horizontal:vertical). No shrubs should be planted within 10 feet of the top or within 5 feet of the toe of gabion walls. For steeper portions of slope, we recommended ground cover (only sparse shrubs should be used in these areas, as necessary). The ground cover should be of low height (preferably not taller than 6 inches) and light-weight vegetation that can shed water (i.e. reduce water penetration below the surface). The ground cover will need to be held in place with a permanent erosion fabric. The preferred shrub height is a maximum of two feet, with taller shrubs located at approximately 50 feet on center, as necessary. Plates 2A through 2E of Option 3 in Attachment 2 shows the approximate locations where shrubs may be used and where thin light-weight ground cover that can adhere to the ground surface is preferable. The shrubs should be staggered not to create planes of weakness.

The shrubs and ground covers selected should require very low maintenance because of difficulties to access steep slopes with trimming equipment, and poorly maintained vegetations will be detrimental to the slope. The irrigation system for the upper two third of the slope should be located at the top of the slope, and placed on the ground surface where it can be accessed for maintenance. The lower portion of the slope may be irrigated from the bottom where irrigation piping can be accessed for maintenance. Irrigation in the steep portions of the slope should consist of low flow or light mist to prevent water from flowing and causing erosion on the slope, soaking the flatter and lower portions of the slope, and creating slide prone areas.

We strongly recommend the construction of two or three experimental test segments to optimize the design, the specifications and construction procedures for the slope enhancement project. Slope segments with different configurations should be selected. The test segments should be at least 200 feet long.
SIDEWALK UNDERMINING

The sidewalk at the top of the slope has been undermined in several locations as previously reported. For cost estimating purpose, the most prevalently undermined areas are located in the vicinity of Stations 3+80 to 4+00, 5+10 to 5+20, 10+45 to 10+50, 14+60 to 15+20, 18+30 to 18+50, 22+10 to 22+20, 26+65 to 26+85, 29+20 to 29+35, 30+55 to 30+65, 32+15 to 32+25, 34+15 to 34+30, 34+35 to 34+65, 34+75 to 34+95 and 35+25 to 36+10. Posts and boards, as described in the referenced draft geotechnical study report, are recommended. An alternative to posts and boards would be to remove the sidewalk, overexcavate and level the eroded areas, and backfill using soil reinforced with Geogrids. The reinforced soil zones should be used in combination with Verdura wall blocks (or equivalent) as facing to prevent further soil loss from under the sidewalk. The recommended permanent erosion fabric could be installed prior to recasting the sidewalk.

The options presented above can be intermixed and modified as required to fit the site conditions, access and other site constraints.

CLOSURE

Unless specifically superseded in this letter, the recommendations in the above-referenced geotechnical report remain applicable. This document is intended to provide specific recommendations for the subject project. Accordingly, it cannot be considered an independent document, as it does not contain adequate background information. This document is directed only to the personnel with detailed knowledge of the subject project. The conclusions and recommendations presented herein were prepared under the conditions and limitations presented in our December 10, 2009 report.

We trust that this letter meets your current needs. We appreciate the opportunity to be of continued service to you on this project. If you have any questions or require additional information, please do not hesitate to contact the undersigned at (949) 727-4466.
We appreciate the opportunity to be of professional service to you on this project. If you have any questions or require additional information, please do not hesitate to contact the undersigned at 949-727-4466.

Respectfully submitted,

KLEINFELDER WEST, INC.

Jacques B. Roy, P.E. G.E.
Principal Geotechnical Engineer

P. Jared Mechetti, P.E.
Project Manager

Attachments:
1) Geologic Map, Option 1A, Plates 2A through 2E, and Cross Sections per order of Stationing (A, B, 1, 2, C, 3, 4, D, E, 5, F, 6, 7, G, 8, 9, 10, 11, H, 12, I, 13, 14)
 Geologic Map, Option 1B, Plates 2A through 2E, and Cross Sections per order of Stationing (A, B, 1, 2, C, 3, 4, D, E, 5, F, 6, 7, G, 8, 9, 10, 11, H, 12, I, 13, 14)
2) Geologic Map, Option 3, Plates 2A through 2E, and Cross Sections per order of Stationing (A, B, 1, 2, C, 3, 4, D, E, 5, F, 6, 7, G, 8, 9, 10, 11, H, 12, I, 13, 14)
ATTACHMENT 1

Geologic Map, Option 1A, Plates 2A through 2E, and Cross Sections per order of Stationing (A, B, 1, 2, C, 3, 4, D, E, 5, F, 6, 7, G, 8, 9, 10, 11, H, 12, I, 13, 14)

Geologic Map, Option 1B, Plates 2A through 2E, Cross Section per order of Stationing (A, B, 1, 2, C, 3, 4, D, E, 5, F, 6, 7, G, 8, 9, 10, 11, H, 12, I, 13, 14)
Fill with Geogrids

8' - 8'

Section
ATTACHMENT 2

Geologic Map, Option 3, Plates 2A through 2E, and Cross Sections per order of Stationing (A, B, 1, 2, C, 3, 4, D, E, 5, F, 6, 7, G, 8, 9, 10, 11, H, 12, I, 13, 14)
EXPLANATION
af ARTIFICIAL FILL
Qcol COLLUVIUM
Qls LANDSLIDE
Qops QUaternary Old Paralic Deposits

OPTION 3
OPTION 3